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SUMMARY

This paper presents a novel face-based smoothed finite element method (FS-FEM) to improve the accuracy
of the finite element method (FEM) for three-dimensional (3D) problems. The FS-FEM uses 4-node
tetrahedral elements that can be generated automatically for complicated domains. In the FS-FEM, the
system stiffness matrix is computed using strains smoothed over the smoothing domains associated with the
faces of the tetrahedral elements. The results demonstrated that the FS-FEM is significantly more accurate
than the FEM using tetrahedral elements for both linear and geometrically non-linear solid mechanics
problems. In addition, a novel domain-based selective scheme is proposed leading to a combined FS/NS-
FEM model that is immune from volumetric locking and hence works well for nearly incompressible
materials. The implementation of the FS-FEM is straightforward and no penalty parameters or additional
degrees of freedom are used. The computational efficiency of the FS-FEM is found better than that of
the FEM. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The 4-node tetrahedral (T4) element is often used to introduce the procedures of the finite element
method (FEM) in three dimensions (3D). The reason is that the T4 element can be very easily
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formulated and implemented using piecewise linear approximation. Furthermore, most FEM codes
for adaptive analyses of 3D problems use tetrahedral elements, due to the simple fact that tetrahedral
meshes can be automatically generated and refined, even for complicated domains.

However, T4 element of FEM also possesses significant shortcomings for problems of solid
mechanics. Two such shortcomings are the well-known overly stiff behavior and volumetric locking
in the nearly incompressible cases. In order to overcome these disadvantages, some new finite
elements were proposed. Dohrmann et al. [1] presented a weighted least-squares approach in which
a linear displacement field is fitted to an element’s nodal displacements. The method is claimed
to be computationally efficient and avoids the volumetric locking problems. However, more nodes
are required on the element boundary to define the linear displacement field. Dohrmann et al. [2]
also proposed a nodal integration FEM in which each element is associated with a single node and
the linear interpolation functions of the original mesh are used. The method avoids the volumetric
locking problems and performs better comparing with T4 element in terms of stress solution for
static problems. However, for dynamic problems, the method is not stable due to the appearance of
spurious modes at higher energy levels. Therefore, a stabilization scheme such as the one proposed
by Puso and Solberg [3] is required for dynamic problems.

In the other front of development, meshfree methods have been developed for various types of
problems [4, 5]. A strain-smoothing technique has been used by Chen et al. [6] to stabilize the nodal-
integrated meshfree method and the natural-element method [7]. Liu [8] has applied this technique
and extended it to a generalized gradient smoothing technique allowing the use of discontinuous
functions. The generalized gradient smoothing technique offers a theoretical foundation to the so-
called weakened weak formulation [9] for a wide class of compatible and incompatible methods,
including the linear conforming point interpolation method (LC-PIM) [10, 11] and the linearly
conforming radial point interpolation method [12] that use incompatible shape functions. Applying
the same idea to the FEM, an element-based smoothed FEM (SFEM) [13–15] and a node-based

Figure 1. Division of quadrilateral element into the smoothing cells (SC) in the SFEM: (a) SC=1;
(b) SC=2; (c) SC=3; (d) SC=4; (e) SC=8; and (f) SC=16.
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Figure 2. n-sided polygonal elements and the smoothing cell (shaded area)
associated with nodes in the NS-FEM.

smoothed FEM (NS-FEM) [16] have also been formulated. In the SFEM, the strain-smoothing
domains and the integration are performed over the quadrilateral elements, and these smoothing
domains can be divided into one or many smoothing cells on each element, as shown in Figure 1. The
SFEM has been developed for general n-sided polygonal elements [17], and further extended for
plate and shell analyses [18, 19]. In the NS-FEM, the strain-smoothing domains and the integration
are performed over the cells associated with nodes, and methods can be applied easily to triangular,
4-node quadrilateral, n-sided polygonal elements for 2D problems and tetrahedral elements for
3D problems. For n-sided polygonal elements, the cell �(k) associated with the node k is created
by connecting sequentially the mid-edge-point to the central points of the surrounding n-sided
polygonal elements of the node k as shown in Figure 2. When only linear triangular or tetrahedral
elements are used, the NS-FEM produces the same results as the method proposed by Dohrmann
et al. [2] or the LC-PIM [12] using linear interpolation. Liu and Zhang [20] have provided an
intuitive explanation and showed numerically that the LC-PIM can produce a upper bound to the
exact solution in the strain energy, when a reasonably fine mesh is used. The upper bound property
was also found in the NS-FEM [16]. Both upper and lower bounds in the strain energy for elastic
solid mechanics problems can now be obtained by combining the NS-FEM with the SFEM (for
n-sided polygonal elements) or with the FEM (for triangular or 4-node quadrilateral elements).
Further developed, a nearly exact solution in strain energy using triangular and tetrahedral elements
is also proposed by Liu et al. [21] by combining a scale factor �∈[0,1] with the NS-FEM and the
FEM to give a so-called the alpha Finite Element Method (�FEM). Other idea was proposed by
Duarte et al. [22] by combining C0 Lagrange FE shape functions with the proposed Ck partition of
unity to give a so-called arbitrary smooth generalized finite element approximation (Ck GFEM).

Recently, an edge-based smoothed FEM (ES-FEM) [23] was also formulated for static, free
and forced vibration analyses in 2D problems. The ES-FEM uses triangular elements that can
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Figure 3. Triangular elements and the smoothing domains (shaded areas)
associated with edges in the ES-FEM.

be generated automatically for complicated domains. In the ES-FEM, the system stiffness matrix
is computed using strains smoothed over the smoothing domains associated with the edges of
the triangles. For triangular elements, the smoothing domain �(k) associated with the edge k is
created by connecting two endpoints of the edge to the two centroids of the two adjacent elements
as shown in Figure 3. Extending the smoothing domain �(k) associated with the edge k to the
quadrilateral or n-sided polygonal elements [24] is straightforward as shown in Figure 4.

The results demonstrated that the ES-FEM possesses the following excellent properties: (1)
the ES-FEM model possesses a close-to-exact stiffness: it is much softer than the ‘overly stiff’
FEM and much stiffer than the ‘overly soft’ NS-FEM model; (2) the results are often found to be
superconvergent and ultra-accurate: much more accurate than the linear triangular elements of FEM
and even more accurate than those of the FEM using quadrilateral elements with the same sets of
nodes; (3) there are no spurious non-zero energy modes found and hence the method is also stable
and works well for vibration analysis; (4) the implementation of the method is straightforward
and no penalty parameter is used, and the computational efficiency is better than the FEM using
the same sets of nodes. In addition, a novel domain-based selective scheme is proposed leading
to a combined ES/NS-FEM model that is immune from volumetric locking and hence works very
well for nearly incompressible materials. These properties of the ES-FEM are confirmed using
examples of static, free and forced vibration analyses of solids [23].

In this paper, we extend the idea of the ES-FEM for 3D problems. Instead of using the edges
of the elements in 2D problems, we will use the faces of the elements as the base for smoothing
domain construction for 3D problems. It is therefore termed as the face-based smoothed finite
element method (FS-FEM). The FS-FEM uses T4 elements that can be generated automatically
for complicated domains. In the FS-FEM, the system stiffness matrix is computed using strains
smoothed over the smoothing domains associated with the faces of the tetrahedral elements, and
hence is softer than that of T4 element. The results demonstrated that the FS-FEM is significantly
more accurate than T4 element for both linear and geometrically non-linear problems. In addition,
a novel domain-based selective scheme is proposed leading to a combined FS/NS-FEM model that
is immune from volumetric locking and hence works well for nearly incompressible materials. The
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Figure 4. Domain discretization and the smoothing domains (shaded areas) associated with edges in the
ES-FEM: (a) quadrilateral elements and (b) n-sided polygonal elements.

implementation of the FS-FEM is straightforward and no penalty parameter or additional degrees
of freedom is used. The computational efficiency of the FS-FEM is found better than that of T4
element.

The paper is outlined as follows. In Section 2, the idea of the FS-FEM is introduced. In Section 3,
the properties of the FS-FEM are presented and the geometrically non-linear problem of large
deformation using the FS-FEM is described briefly in Section 4. Section 5 presents a domain-
based selective scheme for nearly incompressible materials and numerical implementations of the
FS-FEM are described in Section 6. Some numerical examples are presented and examined in
Section 7 and some concluding remarks are made in Section 8.

2. THE IDEA OF THE FS-FEM

2.1. Briefing on the FEM [25–27]
The discrete equations of the FEM are generated from the Galerkin weak form

∫
�

(∇s�u)TD(∇su)d�−
∫

�
�uTbd�−

∫
�t

�uTt̄d�=0 (1)
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where b is the vector of external body forces, D is a symmetric positive-definite (SPD) matrix
of material constants, t̄ is the prescribed traction vector on the natural boundary �t, u is trial
functions, �u is test functions and ∇su is the symmetric gradient of the displacement field.

The FEM uses the following trial and test functions

uh(x)=
NP∑
I=1

NI (x)dI ; �uh(x)=
NP∑
I=1

NI (x)�dI (2)

where NP is the number of the nodal variables of the element, dI is the nodal displacement vector
and NI (x) is the shape function matrix.

By substituting the approximations, uh and �uh , into the weak form and invoking the arbitrariness
of virtual nodal displacements, Equation (1) yields the standard discretized algebraic equation
system

KFEMd= f (3)

where KFEM is the stiffness matrix; f is the element force vector that are assembled with entries of

KFEM
I J =

∫
�
BT
IDBJ d� (4)

fI =
∫

�
NT

I (x)bd�+
∫

�t

NT
I (x)t̄d� (5)

with the compatible strain gradient matrix defined as

BI (x)=∇sNI (x) (6)

In the FEM, the integrations in Equations (4) and (5) are performed based on elements.

2.2. A face-based smoothed finite element method (FS-FEM)

This section formulates the FS-FEM for 3D problems using tetrahedral elements. In the FS-FEM,
the domain discretization is the same as that of the standard FEM using Nn nodes and Ne tetrahedral
elements, but the integration using strain-smoothing technique [6] is performed over smoothing
domains constructed based on the faces of the elements. In such a face-based integration process,
the problem domain � is divided into smoothing domains associated with faces of tetrahedral
elements such that �=∑Nf

k=1�(k) and �(i)∩�( j) �=∅, i �= j , in which Nf is the total number of
faces located in the whole problem domain. For tetrahedral elements, the smoothing domain �(k)

associated with the face k is created by connecting three nodes of the face to the two centers of
the two adjacent elements as shown in Figure 5.

Applying the face-based smoothing operation, the compatible strains e=∇su used in Equation (1)
is used to create a smoothed strain on the smoothing domain �(k) associated with face k

ẽk =
∫

�(k)
e(x)�k(x)d�=

∫
�(k)

∇su(x)�k(x)d� (7)

where �k(x) is a given smoothing function that satisfies at least unity property∫
�(k)

�k(x)d�=1 (8)
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Figure 5. Two adjacent tetrahedral elements and the smoothing domain �(k) (shaded domain) formed based
on their interface k in the FS-FEM.

Using the following constant smoothing function:

�k(x)=
{
1/V (k), x∈�(k)

0, x /∈�(k)
(9)

where V (k) is the volume of the smoothing domain �(k) and is calculated by

V (k) =
∫

�(k)
d�= 1

4

N (k)
e∑

j=1
V ( j)
e (10)

where N (k)
e is the number of elements around the face k (N (k)

e =1 for the boundary faces and
N (k)
e =2 for inner faces) and V ( j)

e is the volume of the j th element around the face k.
In the FS-FEM, the trial function uh(x) is the same as in Equation (2) of the FEM and therefore

the force vector f in the FS-FEM is calculated in the same way as in the FEM.
Substituting Equation (2) into Equation (7), the smoothed strain on the domain �(k) associated

with face k can be written in the following matrix form of nodal displacements:

ẽk = ∑
I∈N (k)

n

B̃I (xk)dI (11)

where N (k)
n is the total number of nodes of elements containing the common face k (N (k)

n =4 for
boundary faces and N (k)

n =5 for inner faces) and B̃I (xk), which is termed as the smoothed strain
matrix on the domain �(k), is calculated numerically by an assembly process similarly as in the
FEM

B̃I (xk)= 1

V (k)

N (k)
e∑

j=1

1

4
V ( j)
e B j (12)

where B j is the standard compatible strain gradient matrix by Equation (6) of the j th element
around the face k.
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Owing to the use of the tetrahedral elements with the linear shape functions, the entries of
matrix B j are constants, and so are the entries of matrix B̃I (xk). The entries in sub-matrices of
the stiffness matrix K̃ of the system are then assembled by a similar process as in the FEM

K̃I J =
Nf∑
k=1

K̃(k)
I J (13)

where K̃(k)
I J is the stiffness matrix associated with face k and is calculated by

K̃(k)
I J =

∫
�(k)

B̃T
IDB̃J d�= B̃T

IDB̃J V
(k) (14)

Note that with this formulation, only the volume and the usual compatible strain gradient
matrices B j by Equation (6) of T4 element are needed to calculate the system stiffness matrix for
the FS-FEM.

Note that by applying the divergence theorem, the smoothed strain matrix B̃I (xk) on the domain
�(k) can be calculated in a more general way by

B̃I (xk)= 1

V (k)

∫
�(k)

n(k)(x)NI (x)d�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̃I x (xk) 0 0

0 b̃I y(xk) 0

0 0 b̃I z(xk)

b̃I y(xk) b̃I x (xk) 0

0 b̃I z(xk) b̃I y(xk)

b̃I z(xk) 0 b̃I x (xk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

with

b̃I h(xk)= 1

V (k)

∫
�(k)

n(k)
h (x)NI (x)d� (h= x, y, z) (16)

where �(k) is the boundary of the smoothing domain �(k), and n(k)(x) is the outward normal
vector matrix on the boundary �(k) and has the form

n(k)(x)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n(k)
x 0 0

0 n(k)
y 0

0 0 n(k)
z

n(k)
y n(k)

x 0

0 n(k)
z n(k)

y

n(k)
z 0 n(k)

x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

When a linear compatible displacement field along the boundary �(k) is used, one Gaussian
point at the central point of the boundary areas �(k)

i of the smoothing domain �(k) is sufficient
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for the area integration, the Equation (16) can be further simplified to its algebraic form

b̃I h(xk)= 1

V (k)

M∑
i=1

n(k)
ih NI (xGPi )A(k)

i (h= x, y, z) (18)

where M is the total number of the boundary areas �(k)
i (M=6 for the inner smoothing faces and

M=4 for boundary smoothing faces), xGPi is the central point (Gaussian point) of the boundary

area �(k)
i , whose area and outward unit normal are denoted as A(k)

i and n(k)
ih , respectively.

Equation (18) implies that only shape function values at some particular points on the surfaces
of the boundary domains �(k)

i are needed and no explicit analytical form is required. This gives
much more freedom in shape function construction.

Note that by using Equation (15) to calculate B̃I (xk), it is straightforward to extend the FS-FEM
for the higher-order elements. However, to ensure stability, the number of smoothing domains
should be increased corresponding to the number of nodes of the elements. The calculation of the
minimum number of smoothing domains is given in Reference [8].

3. PROPERTIES OF THE FS-FEM

Property 1 (displacement compatibility)
The assumed displacement field is compatible (linearly continuous through out the domain) in the
FS-FEM.

This property can be explicitly seen from the FS-FEM formulation procedure: linear element-
based interpolation is used throughout the whole problem domain. This property ensures that the
FS-FEM will be able to reproduce the linear field exactly. This will be confirmed in the patch test
given in Section 6.

Property 2
The FS-FEM is variationally consistent.

Proof
In the FS-FEM, the generalized Galerkin weak form is used with the smoothed strain (7) instead
of the compatible strain e=∇su, the variational consistency thus needs to be examined. To this
end, we start with the modified Hellinger–Reissner variational principle with the assumed strain
vector ẽ and displacements u as independent field variables [28]

U (u, ẽ)=−
∫

�

1

2
ẽTDẽd�+

∫
�
(Dẽ)T(∇su)d�−

∫
�
uTbd�−

∫
�t

uTt̄d� (19)

Performing the variation using the chain rule, one obtains

�U (u, ẽ) = −
∫

�
�ẽTDẽd�+

∫
�

�ẽTD(∇su)d�+
∫

�
ẽTD(∇s�u)d�

−
∫

�
�uTbd�−

∫
�t

�uTt̄d�=0 (20)
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Substituting the approximations (2), (11) into (20), one obtains

Nn∑
I=1

�dTI

(
−

∫
�
B̃T
IDB̃J d�+

∫
�
B̃T
IDBJ d�+

∫
�
B̃T
IDBJ d�

)
dJ

−�dTI

(∫
�
NT

I bd�+
∫

�t

NT
I t̄d�

)
=0, J =1 :Nn

and using the arbitrary property of variation, we obtain

Ktwo-fieldd= f (21)

where Ktwo-field is the smoothed stiffness matrix given by Equation (22), and f is the element force
vector given by Equation (23)

Ktwo-field
I J = −

∫
�
B̃T
IDB̃J d�+2

∫
�
B̃T
IDBJ (x)d� (22)

= −
Nf∑
k=1

∫
�(k)

B̃T
IDB̃J d�+2

Nf∑
k=1

∫
�(k)

B̃T
IDBJ (x)d� (23)

Using smoothed matrices B̃I in Equation (12), the following orthogonal condition is satisfied [29]
∫

�(k)
B̃T
IDBJ (x)d� = B̃T

ID
∫

�(k)
BJ (x)d�= B̃T

IDV (k)
∫

�(k)

BJ (x)
V (k)

d�= B̃T
IDB̃J V

(k)

=
∫

�(k)
B̃T
IDB̃J d� (24)

and from Equation (22) we then have

Ktwo-field
I J =K̃FS-FEM

I J =
∫

�
B̃T
IDB̃J d�=

Nf∑
k=1

∫
�(k)

B̃T
IDB̃J d� (25)

The FS-FEM uses directly Equation (25) to calculate the stiffness matrix; therefore, the FS-FEM
is ‘variationally consistent’. �

Note that although the two-field Hellinger–Reissner principle is used, the FS-FEM has only the
displacements as unknowns. Therefore, it is very much different from the so-called mixed FEM
formulation, where stresses (or strains) are usually also unknowns.

Property 3
The stiffness matrix of the FS-FEM has the same unknowns of only the displacement, the same
bandwidth and sparsity as that of the standard FEM, and hence the same computational complexity.

4. GEOMETRICALLY NON-LINEAR PROBLEMS OF LARGE DEFORMATION

For the geometrically non-linear problems of large deformation and isotropic linear elastic solids,
the values of the strain gradient matrices and stresses at the faces are the average values of those of
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the adjacent elements around the face, and all the techniques used in the FEM can be employed. The
finite element model of the FS-FEM for geometrically non-linear problems of large deformation
based on the total Lagrange formulation [25, 30] is expressed as follows:

(K̃FS-FEM
L +K̃FS-FEM

NL )d= f−f1 (26)

where

K̃FS-FEM
L =

Nf∑
k=1

B̃T
LDB̃LV

(k) (27)

K̃FS-FEM
NL =

Nf∑
k=1

B̃T
NL S̃B̃NLV

(k) (28)

f1 =
Nf∑
k=1

B̃T
L{S̃}V (k) (29)

With

BL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F11N1,1 F21N1,1 F31N1,1

F12N1,2 F22N1,2 F13N1,2

F13N1,3 F23N1,3 F33N1,3

F11N1,2+F12N1,1 F21N1,2+F22N1,1 F31N1,2+F32N1,1

F12N1,3+F13N1,2 F22N1,3+F23N1,2 F32N1,3+F33N1,2

F11N1,3+F13N1,1 F21N1,3+F23N1,1 F31N1,3+F33N1,1

F11N2,1 · · · F31N4,1

F12N2,2 · · · F13N4,2

F13N2,3 · · · F33N4,3

F11N2,2+F12N2,1 · · · F31N4,2+F32N4,1

F12N2,3+F13N2,2 · · · F32N4,3+F33N4,2

F11N2,3+F13N2,1 · · · F31N4,3+F33N4,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

B̃L = 1

V (k)

N (k)
e∑

i=1

1

4
V (i)
e B(i)

L (31)
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BNL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1,1 0 0 N2,1 · · · 0

N1,2 0 0 N2,2 · · · 0

N1,3 0 0 N2,3 · · · 0

0 N1,1 0 0 · · · 0

0 N1,2 0 0 · · · 0

0 N1,3 0 0 · · · 0

0 0 N1,1 0 · · · N4,1

0 0 N1,2 0 · · · N4,2

0 0 N1,3 0 · · · N4,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and B̃NL = 1

V (k)

N (k)
e∑

i=1

1

4
V (i)
e B(i)

NL (32)

S=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0 0 0 0

S12 S22 S23 0 0 0 0 0 0

S13 S23 S33 0 0 0 0 0 0

0 0 0 S11 S12 S13 0 0 0

0 0 0 S12 S22 S23 0 0 0

0 0 0 S13 S23 S33 0 0 0

0 0 0 0 0 0 S11 S12 S13

0 0 0 0 0 0 S12 S22 S23

0 0 0 0 0 0 S13 S23 S33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

S̃= 1

V (k)

N (k)
e∑

i=1

1

4
V (i)
e S(i) (33)

where the second Piola-Kirchhoff stress tensor {S} is derived from

{S}=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11

S22

S33

S12

S23

S31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=D

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E11

E22

E33

2E12

2E23

2E31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and {S̃}= 1

V (k)

N (k)
e∑

i=1

1

4
V (i)
e {S}(i) (34)

with the Green–Lagrange strain tensor E of the elements is calculated by

E=
⎡
⎢⎣
E11 E12 E13

E21 E22 E23

E31 E32 E33

⎤
⎥⎦= 1

2
(FTF−I) (35)
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where I is the third-order unit matrix and the deformation gradient tensor F of the elements is
derived from

F=
⎡
⎢⎣
F11 F12 F13

F21 F22 F23

F31 F32 F33

⎤
⎥⎦=

(
�x
�X

)T

=(∇d+I)T (36)

Note that in Equations (30) and (32), NI, j =�NI /�X j .

5. A DOMAIN-BASED SELECTIVE SCHEME: A COMBINED FS/NS-FEM MODEL

Volumetric locking appears when the Poisson’s ratio approaches 0.5. The application of selective
formulations in the conventional FEM [31] has been found effectively to overcome such a locking
and hence the similar idea is employed in this paper. However, different from the FEM using
selective integration [31], our selective scheme will use two different types of smoothing domains
selectively for two different material ‘parts’ (�-part and �-part). Since the node-based smoothing
domains used in the NS-FEM were found effective in overcoming volumetric locking [16], and
the �-part is known as the culprit of the volume locking, we use node-based domains for the �-part
and face-based domains for the �-part. The details are given below:

The material property matrix D for isotropic materials is first decomposed into

D=D1+D2 (37)

where D1 relates to the shearing modulus �=E/[2(1+�)] and hence is termed as �-part of D,
and D2 relates to the Lame’s parameter �=2��/(1−2�) and hence is termed as �-part of D. For
3D geometries, we have:

D=�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=D1+D2 (38)

In our domain-based selective scheme proposed, we use the NS-FEM to calculate the stiffness
matrix related to �-part and the FS-FEM to calculate the one related to the �-part. The stiffness
matrix of the combined FS/NS-FEM model becomes

K̃=
Nf∑
i=1

(B̃i
1)

TD1B̃i
1V

i
1︸ ︷︷ ︸

K̃FS-FEM
1

+
Nn∑
j=1

(B̃ j
2)

TD2B̃
j
2V

j
2︸ ︷︷ ︸

K̃NS-FEM
2

(39)

where B̃i
1 and V i

1 are the smoothed strain matrix and volume of the smoothing domain �(i)
f

associated with face i , correspondingly; B̃ j
2 and V j

2 are the smoothed strain matrix and volume
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of the smoothing domain �( j)
n associated with node j , correspondingly; Nn is the total number of

nodes located in the entire problem domain.

6. NUMERICAL IMPLEMENTATION

6.1. Stability of the FS-FEM

Property 4
The FS-FEM possesses only ‘legal’ zero energy modes that represent the rigid motions and hence
the FS-FEM is spatially stable. There exist no spurious non-zero energy modes and thus the
FS-FEM is also temporally stable.

In the standard FEM using T4 meshes and linear shape functions, the integration on the weak
form is based on elements. For each element, only one Gauss point is needed to calculate. This
implies that the number of Gauss points to calculate equals to the number of elements of the
problem. Such an FEM model is known to be stable in dynamics analysis and has no spurious
non-zero energy modes.

In the FS-FEM using T4 meshes, the smoothing domains used are associated with faces and
the strain (or stress) on each domain is constant. Therefore, each domain is considered equivalent
to using one Gauss point to calculate the weak form. Because the number of faces is always
larger than the number of elements in any mesh, the number of Gauss points to calculate the weak
form in the FS-FEM is always larger than that in the FEM. Therefore, the FS-FEM is also very
stable and has no spurious non-zero energy modes, and is well suited for the dynamic analysis.
This property of the FS-FEM is quite similar to that of the ES-FEM for free and forced vibration
analyses of solids in 2D problems [23].

Note that, in the NS-FEM [16], the smoothing domains used are associated with the node. The
NS-FEM is proven spatially stable, works well for static problems and can produce upper bound
solutions. However for vibration analysis, the NS-FEM is unstable due to the presence of spurious
non-zero energy modes. This is because the number of nodes is usually much smaller than the
number of elements. This is the same as the under-integration of the weak form inherent in the
nodal integration approach of meshfree methods. The temporal instability, therefore, is one of
the main concerns of the NS-FEM and meshfree methods [3, 32–35].

6.2. Procedure of the FS-FEM

The numerical procedure for the FS-FEM is briefly given as follows:

1. Divide the domain into a set of elements and obtain information on nodes coordinates and
element connectivity,

2. Determine the adjacent elements and the smoothing domain �(k) associated with each face k,
3. Loop over all the elements

(a) Compute and save the gradient matrix B of the element by Equation (6),
(b) Evaluate the force vector of the element by Equation (5), and assemble force vector into

the global force vector,
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4. Loop over all the faces

(a) Compute the matrix B̃I (xk) using Equation (12),
(b) Evaluate the stiffness matrix using Equation (14) of the current smoothing domain �(k),
(c) Assemble the contribution of the current smoothing domain to form the system stiffness

matrix using Equation (13),

5. Implement essential boundary conditions,
6. Solve the system equations to obtain the nodal displacements,
7. Evaluate strains and stresses at interested points.

6.3. Irons first-order patch test and a mesh sensitivity analysis

A first-order patch test is a necessary requirement as a means of assessing the convergence of
a numerical method based on Galerkin weak form. Linear displacements are imposed along the
exterior boundaries of a cubic patch with at least one interior node. Satisfaction of the patch test
requires that the displacements of all the interior nodes follow ‘exactly’ (to machine precision) the
same function of the imposed displacement and constant strain/stress states are reproduced.

The related parameters are taken as E=6.895×106 kPa, �=0.25 and linear displacement field
is given by

u = 0.001∗(2x+ y+z)/2

v = 0.001∗(x+2y+z)/2

w = 0.001∗(x+ y+2z)/2

(40)

The following error norm in displacements is used to examine the computed results:

ed=
∑ndof

i=1 |ui −uhi |∑ndof
i=1 |ui |

×100% (41)

where ui is the exact solution and uhi is the numerical solution. The energy error is defined by

ee=|Enum−Eexact| (42)

where the total strain energy of numerical solution Enum and the total strain energy of exact
solution Eexact are calculated by

Enum = 1

2

Nf∑
k=1

(ehk )
TDehk V

(k) or Enum= 1

2
dTKd (43)

Eexact = 1
2e

TDeVcubic (44)

where e is the constant strain of exact solution; ehk is the strain of numerical solution of the kth
face; Vcubic is the volume of the cubic patch.

A spatial discretization of a cubic patch using 29 T4 elements and 15 nodes (including 8 nodes
at the corners, 6 nodes at the center of 6 boundary faces and 1 interior node) is shown in Figure 6.
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Figure 6. Domain discretization of a cubic patch using 4-node tetrahedral elements.

Table I. Displacement and energy error norms of the patch test.

�ir=0.0 �ir=0.1 �ir=0.2 �ir=0.3 �ir=0.4 �ir=0.49

Displacement norm ed (%) 3.95e−16 1.16e−15 7.73e−16 1.00e−15 1.53e−15 2.21e−15
Energy norm ee 0.0 7.28e−12 1.82e−11 1.09e−11 7.28e−12 2.12e−11

In order to analyze the sensitivity for highly distorted meshes, two types of discretization are used,
one with the interior node located at the center of the cubic patch and one with the interior node
moved randomly inside the cubic patch from the center point in the following fashion:

x ′ = x+�x ·rx ·�ir
y′ = y+�y ·ry ·�ir
z′ = z+�z ·rz ·�ir

(45)

where x , y and z are the coordinate at the center point of the cubic patch; �x , �y and �z are length
of the cubic patch in the x-, y- and z-directions, respectively. rx , ry and rz is computer-generated
random numbers between −1.0 and 1.0 and �ir is a prescribed irregularity factor whose value
is chosen between 0.0 and 0.49. When �ir=0.0, the interior node locates at the center point of
the cubic patch, and when �ir>0.0, the interior node moves randomly inside the cubic patch. The
bigger the value of �ir, the more irregular the shape of elements generated.

It is found that the FS-FEM can pass the Irons first-order patch test within machine precision
regardless of the value �ir used as shown in Table I. There is no accuracy loss due to the choice
of �ir value. This shows that the FS-FEM can work well with the severe distorted meshes. The
FS-FEM, therefore, is suitable to solve the geometrically non-linear problems of large deformation.
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7. NUMERICAL EXAMPLES

In this section, some examples will be presented to demonstrate the properties of the present
method. In some cases, to emphasize the advantages of the FS-FEM, the results of the present
method will be compared with those of the FEM using tetrahedral elements (FEM-T4), 8-node
hexahedral elements (FEM-H8) and NS-FEM using tetrahedral elements (NS-FEM-T4) [16].

The error norm of displacement is given by Equation (41), and the error norm of energy is
calculated by

ee=|Enum−Eexact|1/2 (46)

where the total strain energy of numerical solution Enum and the total strain energy of exact
solution Eexact are calculated by

Enum = 1
2d

TKnumd (47)

Eexact = 1

2
lim

Ne→∞
Ne∑
i=1

∫
�i

eTi Dei d� (48)

where ei is the strain of exact solution of the i th element. In actual computation using Equation (46),
we will use a very fine mesh (Ne→∞) to calculate the exact strain energy Eexact.

7.1. 3D Lame problem

A 3D Lame problem consists of a hollow sphere with inner radius a=1m, outer radius b=2m
and subjected to internal pressure P=1N/m2, as shown in Figure 7. For this benchmark problem,
the analytical solution is available in polar coordinate system [36].

ur = Pa3r

E(b3−a3)

[
(1−2�)+(1+�)

b3

2r3

]
(49)

�r = Pa3(b3−r3)

r3(a3−b3)
; �� = Pa3(b3+2r3)

2r3(b3−a3)
(50)

where r is the radial distance from the centroid of the sphere to the point of interest in the
sphere.

As the problem is spherically symmetrical, only one-eighth of the sphere model is shown
in Figure 8 and symmetry conditions are imposed on the three symmetric planes. The material
parameters of the problem are E=1.0kPa and v=0.3.

Figure 9 shows the convergence rate of the energy error norm of different methods. It is seen that
the results of the FS-FEM and FEM-H8 are almost the same and much more accurate than those
of the NS-FEM-T4 and FEM-T4. Figure 10 shows that the distribution of the radial displacement
using the FS-FEM is in a good agreement with the analytical solution. Figure 11 shows the
convergence rate of the displacement error norm of the different methods. It is shown that the
result of the FS-FEM is less accurate than that of the FEM-H8 but more accurate than those of
the NS-FEM-T4 and FEM-T4. All the above results show that the FS-FEM is significantly more
accurate than the FEM-T4 using tetrahedral elements in the 3D linear problems.
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Figure 7. Hollow sphere model.
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Figure 8. Discretization of one-eighth of hollow sphere model using 4-node tetrahedral elements.
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Figure 9. Convergence rate of energy error norm of the hollow sphere subjected to inner pressure.
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Figure 10. Distribution of the radial displacement of the hollow sphere subjected to inner pressure.
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Figure 11. Convergence rate of displacement error norm of the hollow sphere subjected to inner pressure.

Figure 12 shows the displacement error norm for nearly incompressible material when Poisson’s
ratio is changed from 0.4 to 0.4999999. The results show that the domain-based selective FS/NS-
FEM-T4 can overcome the volumetric locking for nearly incompressible materials and gives better
results than those of the NS-FEM-T4.

Figure 13 compares the computational time between FEM-T4 and FS-FEM. It is seen that with
the same set of nodes, the FS-FEM takes a longer time to solve than the FEM-T4. However,
the FS-FEM is found to be more efficient than the FEM-T4 in terms of CPU time for the same
accuracy in both energy and displacement error norms as shown in Figures 14 and 15.
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Figure 12. Displacement error norm versus different Poisson ratios of the hollow
sphere subjected to inner pressure.
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Figure 13. Comparison of the computational time between FEM-T4 and FS-FEM
of the hollow sphere subjected to inner pressure.
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Figure 14. Comparison of the efficiency in terms of energy error norm between FEM-T4 and FS-FEM of
the hollow sphere subjected to inner pressure.
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Figure 15. Comparison of the efficiency in terms of displacement error norm between FEM-T4 and
FS-FEM of the hollow sphere subjected to inner pressure.

7.2. A 3D cubic cantilever

Consider a 3D cantilever of cubic shape, subjected to a uniform pressure on its upper face as
shown in Figure 16. A discretization of the 3D cubic cantilever using tetrahedral elements is shown
in Figure 17. The exact solution of the problem is unknown. Using standard FEM and a very
fine mesh with 30 204 nodes and 20 675 10-node tetrahedron elements, a reference solution of
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Figure 16. A 3D cubic cantilever subjected to a uniform pressure on the top surface.
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Figure 17. A discretization of the 3D cubic cantilever subjected to a uniform pressure on the
top surface using 4-node tetrahedral elements.

the strain energy is found to be E=0.9486. Also from this reference, the deflection at point A
(1.0,1.0,−0.5) is 3.3912.

Figures 18 and 19 show the convergence rate of energy error norm and relative deflection error
at point A of the different methods, respectively. It is shown that the results of the FS-FEM are a
little less accurate than that of the FEM-H8, but much more accurate than those of the NS-FEM-T4
and FEM-T4. These results again show that the FS-FEM is significantly more accurate than the
FEM-T4 using tetrahedral elements in 3D linear problems.

7.3. A 3D cantilever beam subjected to a regular distributed load: a geometrically non-linear
analysis of large deformation

This example examines the use of the FS-FEM for the geometrically non-linear analysis of large
deformation for 3D solids. A 3D cantilever beam subjected to a regular distributed load is consid-
ered. The size of the beam is (10cm×2cm×2cm) and discretized using a mesh including 1322
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Figure 18. Convergence rate of the energy error norm of the cubic cantilever subjected to a
uniform pressure on the top surface.
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Figure 19. Convergence rate of the deflection at point A(1.0,1.0,−0.5) of the cubic cantilever subjected
to a uniform pressure on the top surface.

nodes and 5802 tetrahedral elements as shown in Figure 21. The related parameters are taken as
E=3.0×107 kPa, �=0.3.
First, a mesh sensitivity analysis using the FS-FEM and the FEM-T4 is performed in the similar

way as in the Iron first-order patch test. The interior nodes are moved randomly inside the cantilever
beam from the original regular positions based on Equation (45), where x , y and z are the original
coordinates of interior points; �x , �y and �z are original average length of the element in the
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Table II. Tip deflection (cm) versus the irregularity factor �ir of the 3D cantilever beam
subjected to a regular distributed load.

�ir=0.0 �ir=0.1 �ir=0.2 �ir=0.3 �ir=0.4

FS-FEM (1322 nodes) 2.4429 2.4373 (0.23%)∗ 2.4218 (0.86%) 2.3888 (2.21%) 2.3418 (4.14%)
FEM-T4 (1322 nodes) 2.3639 2.3559 (0.34%) 2.3349 (1.23%) 2.2933 (2.99%) 2.2141 (6.34%)

∗The number in the bracket shows the relative error (%) between the numerical results at �ir>0 and that at
�ir=0.0.
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Figure 20. A domain discretization of the 3D cantilever beam subjected to a regular distributed load using
severe distorted tetrahedral elements.

x-, y- and z-directions, respectively. In addition, the interior nodes of boundary faces are also
moved randomly inside their original faces. Only nodes located on the boundary sides of the
cantilever beam are kept unchanged. Table II shows the relation between the tip deflection versus
the prescribed irregularity factor �ir chosen between 0.0 and 0.4, and Figure 20 demonstrates a
severe distorted mesh discretization at �ir=0.4. Using the tip deflection d=2.5061 of the FEM-H8
(1323 nodes) as a reference solution, the results in Table II show that the FS-FEM works more
accurately and is less sensitive with the distortion of the mesh than those of the FEM-T4. The
FS-FEM is therefore much more suitable than the FEM-T4 for geometrically non-linear analysis
of large deformation.

The geometrically non-linear analysis based on the total Lagrange formulation is carried out
using 10 increment steps (n=10) with � f =4kN/cm2 in each step. Figure 21 displays the initial
and final configurations after 10 steps of increment of the deformation using the FS-FEM. Table III
and Figure 22 show the relation between the tip deflection versus the load step of different methods.
The simulation converges at a very rapid speed and in each load increment, only less than five
times of iteration are performed. It can be seen that the non-linear effects make the cantilever
beam behave stiffer compared with the linear solutions. In the geometrically non-linear analysis,
the results of FS-FEM are softer than those of FEM-T4, but stiffer than those of the FEM-H8
using 1323 nodes. All these results suggest that the FS-FEM also performs more accurately than
the FEM-T4 in 3D geometrically non-linear analysis of large deformation.
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Figure 21. The initial and final configuration of the 3D cantilever beam subjected to a regular distributed
load using the FS-FEM in the geometrically non-linear analysis of large deformation.

Table III. Tip deflection (cm) versus the load step of the 3D cantilever beam subjected
to a regular distributed load.

FEM-T4 FEM-T4 FEM-H8 FS-FEM
Load (linear) (non-linear) (non-linear) (non-linear)
step (n) (1322 nodes) (1322 nodes) (1323 nodes) (1322 nodes)

1 0.2364 0.2295 (3)∗ 0.2421 (3) 0.2365 (3)
2 0.4728 0.4314 (3) 0.4522 (3) 0.4430 (3)
3 0.7092 0.6119 (3) 0.6405 (3) 0.6277 (3)
4 0.9456 0.7831 (3) 0.8205 (3) 0.8038 (3)
5 1.1819 0.9511 (3) 1.0022 (4) 0.9818 (4)
6 1.4183 1.1210 (4) 1.1762 (4) 1.1516 (4)
7 1.6547 1.2847 (4) 1.3495 (4) 1.3206 (4)
8 1.8911 1.4479 (4) 1.5222 (4) 1.4891 (4)
9 2.1275 1.6104 (4) 1.6943 (4) 1.6569 (4)
10 2.3639 1.7724 (4) 1.8656 (4) 1.8242 (4)

∗The number in the bracket shows the number of iterations.

7.4. An axletree base: a geometrically non-linear analysis of large deformation

In this example, a geometrically non-linear analysis of large deformation of an axletree base is
studied using the present FS-FEM. As shown in Figure 23, the axletree base is symmetric about
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Figure 22. Tip deflection (cm) versus the load step of the 3D cantilever beam subjected to a regular
distributed load in the geometrically non-linear analysis of large deformation.

Figure 23. Axletree base model.

the y–z plane and discretized using a mesh including 1342 nodes and 5124 tetrahedral elements.
The axletree base is subjected to a uniformly distributed force f on the inside circle rim in the
z-direction and fixed in the locations of four lower cylindrical holes and the bottom plane. The
related parameters are taken as E=3.0×107 kPa, �=0.3. The analysis based on the total Lagrange
formulation is carried out using 10 increment steps (n=10) with � f =400kN/cm2 in each step.
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Figure 24. The initial and final configuration viewed from the top of an 3D axletree base using 4-node
tetrahedral elements in the geometrically non-linear analysis of large deformation.

Table IV. Tip displacement (point A) in the z-direction versus the load step of an 3D axletree base using
4-node tetrahedral elements in the geometrically non-linear analysis of large deformation.

FEM-T4 FEM-T4 FEM-T4 FS-FEM
Load (linear) (non-linear) (non-linear) (non-linear)
step (n) (1342 nodes) (1342 nodes) (2520 nodes) (1342 nodes)

1 0.3534 0.3104 (3)∗ 0.3260 (3) 0.3274 (3)
2 0.7068 0.5700 (4) 0.5990 (4) 0.6017 (4)
3 1.0601 0.8120 (5) 0.8538 (5) 0.8577 (5)
4 1.4135 1.0419 (5) 1.0963 (5) 1.1012 (5)
5 1.7669 1.2568 (6) 1.3210 (6) 1.3268 (6)
6 2.1203 1.4650 (6) 1.5393 (6) 1.5460 (6)
7 2.4737 1.6652 (7) 1.7360 (7) 1.7434 (7)
8 2.8271 1.8436 (7) 1.9340 (7) 1.9421 (7)
9 3.1804 2.0269 (8) 2.1074 (8) 2.1161 (8)
10 3.5338 2.1855 (8) 2.2901 (8) 2.2996 (8)

∗The number in the bracket shows the number of iterations.

Figure 24 displays the initial and final configurations viewed from the top of a 3D axletree
base after 10 steps of increment of the deformation using the FS-FEM. Table IV and Figure 25
show the relation between the tip displacement (point A) in the z-direction versus the load step
of different methods. The simulation converges at a rapid speed and in each load increment, only
less than nine times of iteration are performed. It can be seen that the non-linear effects make the
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Figure 25. Tip displacement (point A) in the z-direction versus the load step of an 3D axletree base using
4-node tetrahedral elements in the geometrically non-linear analysis of large deformation.

axletree base behave stiffer compared with the linear solutions. In the geometrically non-linear
analysis, the results of FS-FEM are softer than those of FEM-T4 and almost similar to that of the
FEM-T4 using 2520 nodes. Note that for this problem a discretization using 8-node hexahedral
elements is impossible due to the complicated geometry of the problem at points B, C or D as
shown in Figure 23. All these results again show that the FS-FEM performs more accurately than
the FEM-T4 in 3D geometrically non-linear analysis of large deformation.

8. CONCLUSIONS

In this work, a FS-FEM is proposed and applied for 3D solid mechanics problems. The FS-FEM
uses T4 elements that can be generated automatically for complicated domains. In the FS-FEM, the
system stiffness matrix is computed using strains smoothed over the smoothing domains associated
with the faces of the tetrahedral elements. Through the formulation and numerical examples, the
results demonstrated that the FS-FEM is significantly more accurate than the FEM using tetrahedral
elements for both linear analysis and geometrically non-linear analysis of large deformation. In
addition, a novel domain-based selective scheme is proposed leading to a combined FS/NS-FEM
model that is immune from volumetric locking and hence works well for nearly incompressible
materials. The implementation of the FS-FEM is straightforward and no penalty parameters or
additional degrees of freedom are used. The computational efficiency of the FS-FEM is found
better than that of the FEM-T4 in terms of CPU time for the same accuracy in both strain and
displacement error norms.
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